Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7997): 212-220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086419

RESUMEN

Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes1. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models2-6, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create 'dual-code' enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.


Asunto(s)
Células , Aprendizaje Profundo , Drosophila melanogaster , Elementos de Facilitación Genéticos , Biología Sintética , Animales , Humanos , Animales Modificados Genéticamente/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Células/clasificación , Células/metabolismo , Neuroglía/metabolismo , Encéfalo/citología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas Represoras/metabolismo
2.
Nat Commun ; 13(1): 7392, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450803

RESUMEN

Octopuses are mollusks that have evolved intricate neural systems comparable with vertebrates in terms of cell number, complexity and size. The brain cell types that control their sophisticated behavioral repertoire are still unknown. Here, we profile the cell diversity of the paralarval Octopus vulgaris brain to build a cell type atlas that comprises mostly neural cells, but also multiple glial subtypes, endothelial cells and fibroblasts. We spatially map cell types to the vertical, subesophageal and optic lobes. Investigation of cell type conservation reveals a shared gene signature between glial cells of mouse, fly and octopus. Genes related to learning and memory are enriched in vertical lobe cells, which show molecular similarities with Kenyon cells in Drosophila. We construct a cell type taxonomy revealing transcriptionally related cell types, which tend to appear in the same brain region. Together, our data sheds light on cell type diversity and evolution in the octopus brain.


Asunto(s)
Octopodiformes , Animales , Ratones , Octopodiformes/genética , Células Endoteliales , Encéfalo , Alimentos Marinos , Neuroglía , Drosophila
3.
Nature ; 601(7894): 630-636, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987221

RESUMEN

The Drosophila brain is a frequently used model in neuroscience. Single-cell transcriptome analysis1-6, three-dimensional morphological classification7 and electron microscopy mapping of the connectome8,9 have revealed an immense diversity of neuronal and glial cell types that underlie an array of functional and behavioural traits in the fly. The identities of these cell types are controlled by gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. Here, to characterize GRNs at the cell-type level in the fly brain, we profiled the chromatin accessibility of 240,919 single cells spanning 9 developmental timepoints and integrated these data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which 70,000 are linked to developmental trajectories involving neurogenesis, reprogramming and maturation. For 40 cell types, uniquely accessible regions were associated with their expressed transcription factors and downstream target genes through a combination of motif discovery, network inference and deep learning, creating enhancer GRNs. The enhancer architectures revealed by DeepFlyBrain lead to a better understanding of neuronal regulatory diversity and can be used to design genetic driver lines for cell types at specific timepoints, facilitating their characterization and manipulation.


Asunto(s)
Drosophila , Regulación de la Expresión Génica , Animales , Encéfalo/metabolismo , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Factores de Transcripción/metabolismo
4.
Nat Commun ; 12(1): 4306, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262034

RESUMEN

We lack a thorough understanding of the origin and maintenance of standing genetic variation that enables rapid evolutionary responses of natural populations. Whole genome sequencing of a resurrected Daphnia population shows that standing genetic variation in over 500 genes follows an evolutionary trajectory that parallels the pronounced and rapid adaptive evolution of multiple traits in response to predator-driven natural selection and its subsequent relaxation. Genetic variation carried by only five founding individuals from the regional genotype pool is shown to suffice at enabling the observed evolution. Our results provide insight on how natural populations can acquire the genomic variation, through colonization by a few regional genotypes, that fuels rapid evolution in response to strong selection pressures. While these evolutionary responses in our study population involved hundreds of genes, we observed no evidence of genetic erosion.


Asunto(s)
Adaptación Fisiológica/genética , Daphnia/fisiología , Efecto Fundador , Variación Genética , Animales , Evolución Biológica , Daphnia/genética , Frecuencia de los Genes , Genética de Población , Genoma/genética , Genotipo , Fenotipo , Selección Genética
5.
Mol Ecol ; 29(24): 4823-4834, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031581

RESUMEN

Global warming is causing plastic and evolutionary changes in the phenotypes of ectotherms. Yet, we have limited knowledge on how the interplay between plasticity and evolution shapes thermal responses and underlying gene expression patterns. We assessed thermal reaction norm patterns across the transcriptome and identified associated molecular pathways in northern and southern populations of the damselfly Ischnura elegans. Larvae were reared in a common garden experiment at the mean summer water temperatures experienced at the northern (20°C) and southern (24°C) latitudes. This allowed a space-for-time substitution where the current gene expression levels at 24°C in southern larvae are a proxy for the expected responses of northern larvae under gradual thermal evolution to the predicted 4°C warming. Most differentially expressed genes showed fixed differences across temperatures between latitudes, suggesting that thermal genetic adaptation will mainly evolve through changes in constitutive gene expression. Northern populations also frequently showed plastic responses in gene expression to mild warming, while southern populations were much less responsive to temperature. Thermal responsive genes in northern populations showed to a large extent a pattern of genetic compensation, namely gene expression that was induced at 24°C in northern populations remained at a lower constant level in southern populations, and were associated with metabolic and translation pathways. There was instead little evidence for genetic assimilation of an initial plastic response to mild warming. Our data therefore suggest that genetic compensation rather than genetic assimilation may drive the evolution of plasticity in response to mild warming in this damselfly species.


Asunto(s)
Odonata , Animales , Calentamiento Global , Larva/genética , Odonata/genética , Estaciones del Año , Temperatura
6.
Nat Cell Biol ; 22(8): 986-998, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32753671

RESUMEN

Melanoma cells can switch between a melanocytic and a mesenchymal-like state. Scattered evidence indicates that additional intermediate state(s) may exist. Here, to search for such states and decipher their underlying gene regulatory network (GRN), we studied 10 melanoma cultures using single-cell RNA sequencing (RNA-seq) as well as 26 additional cultures using bulk RNA-seq. Although each culture exhibited a unique transcriptome, we identified shared GRNs that underlie the extreme melanocytic and mesenchymal states and the intermediate state. This intermediate state is corroborated by a distinct chromatin landscape and is governed by the transcription factors SOX6, NFATC2, EGR3, ELF1 and ETV4. Single-cell migration assays confirmed the intermediate migratory phenotype of this state. Using time-series sampling of single cells after knockdown of SOX10, we unravelled the sequential and recurrent arrangement of GRNs during phenotype switching. Taken together, these analyses indicate that an intermediate state exists and is driven by a distinct and stable 'mixed' GRN rather than being a symbiotic heterogeneous mix of cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Línea Celular Tumoral , Movimiento Celular , Redes Reguladoras de Genes , Humanos , Melanoma/patología , Fenotipo , ARN Neoplásico , RNA-Seq , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Cell ; 174(4): 982-998.e20, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29909982

RESUMEN

The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Drosophila melanogaster/fisiología , Femenino , Perfilación de la Expresión Génica , Masculino
8.
Mol Ecol ; 27(4): 886-897, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28746735

RESUMEN

Natural habitats are exposed to an increasing number of environmental stressors that cause important ecological consequences. However, the multifarious nature of environmental change, the strength and the relative timing of each stressor largely limit our understanding of biological responses to environmental change. In particular, early response to unpredictable environmental change, critical to survival and fitness in later life stages, is largely uncharacterized. Here, we characterize the early transcriptional response of the keystone species Daphnia magna to twelve environmental perturbations, including biotic and abiotic stressors. We first perform a differential expression analysis aimed at identifying differential regulation of individual genes in response to stress. This preliminary analysis revealed that a few individual genes were responsive to environmental perturbations and they were modulated in a stressor and genotype-specific manner. Given the limited number of differentially regulated genes, we were unable to identify pathways involved in stress response. Hence, to gain a better understanding of the genetic and functional foundation of tolerance to multiple environmental stressors, we leveraged the correlative nature of networks and performed a weighted gene co-expression network analysis. We discovered that approximately one-third of the Daphnia genes, enriched for metabolism, cell signalling and general stress response, drives transcriptional early response to environmental stress and it is shared among genetic backgrounds. This initial response is followed by a genotype- and/or condition-specific transcriptional response with a strong genotype-by-environment interaction. Intriguingly, genotype- and condition-specific transcriptional response is found in genes not conserved beyond crustaceans, suggesting niche-specific adaptation.


Asunto(s)
Daphnia/genética , Redes Reguladoras de Genes , Transcripción Genética , Animales , Secuencia Conservada , Regulación de la Expresión Génica , Genoma , Genotipo , Familia de Multigenes
9.
Genome Biol Evol ; 9(6): 1821-1842, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854641

RESUMEN

Ecological genomics aims to understand the functional association between environmental gradients and the genes underlying adaptive traits. Many genes that are identified by genome-wide screening in ecologically relevant species lack functional annotations. Although gene functions can be inferred from sequence homology, such approaches have limited power. Here, we introduce ecological regulatory genomics by presenting an ontology-free gene prioritization method. Specifically, our method combines transcriptome profiling with high-throughput cis-regulatory sequence analysis in the water fleas Daphnia pulex and Daphnia magna. It screens coexpressed genes for overrepresented DNA motifs that serve as transcription factor binding sites, thereby providing insight into conserved transcription factors and gene regulatory networks shaping the expression profile. We first validated our method, called Daphnia-cisTarget, on a D. pulex heat shock data set, which revealed a network driven by the heat shock factor. Next, we performed RNA-Seq in D. magna exposed to the cyanobacterium Microcystis aeruginosa. Daphnia-cisTarget identified coregulated gene networks that associate with the moulting cycle and potentially regulate life history changes in growth rate and age at maturity. These networks are predicted to be regulated by evolutionary conserved transcription factors such as the homologues of Drosophila Shavenbaby and Grainyhead, nuclear receptors, and a GATA family member. In conclusion, our approach allows prioritising candidate genes in Daphnia without bias towards prior knowledge about functional gene annotation and represents an important step towards exploring the molecular mechanisms of ecological responses in organisms with poorly annotated genomes.


Asunto(s)
Proteínas de Artrópodos/genética , Daphnia/genética , Factores de Transcripción/genética , Animales , Proteínas de Artrópodos/metabolismo , Daphnia/clasificación , Daphnia/crecimiento & desarrollo , Daphnia/microbiología , Evolución Molecular , Redes Reguladoras de Genes , Genómica , Microcystis/fisiología , Filogenia , Factores de Transcripción/metabolismo
11.
Mol Ecol ; 25(24): 6024-6038, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27862502

RESUMEN

Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species' evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.


Asunto(s)
Evolución Biológica , Daphnia/genética , Ambiente , Selección Genética , Animales , Variación Genética
12.
Sci Data ; 3: 160030, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27164179

RESUMEN

The full exploration of gene-environment interactions requires model organisms with well-characterized ecological interactions in their natural environment, manipulability in the laboratory and genomic tools. The waterflea Daphnia magna is an established ecological and toxicological model species, central to the food webs of freshwater lentic habitats and sentinel for water quality. Its tractability and cyclic parthenogenetic life-cycle are ideal to investigate links between genes and the environment. Capitalizing on this unique model system, the STRESSFLEA consortium generated a comprehensive RNA-Seq data set by exposing two inbred genotypes of D. magna and a recombinant cross of these genotypes to a range of environmental perturbations. Gene models were constructed from the transcriptome data and mapped onto the draft genome of D. magna using EvidentialGene. The transcriptome data generated here, together with the available draft genome sequence of D. magna and a high-density genetic map will be a key asset for future investigations in environmental genomics.


Asunto(s)
Daphnia/genética , Genoma , Transcriptoma , Animales , Secuencia de Bases , Bases de Datos Genéticas , Interacción Gen-Ambiente , ARN/genética
13.
FEMS Microbiol Ecol ; 86(2): 357-71, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23786549

RESUMEN

The potential of a novel class of prebiotics, arabinoxylan oligosaccharides (AXOS), was investigated on growth performance and gut microbiota of juvenile Acipenser baerii. Two independent feeding trials of 10 or 12 weeks were performed with basal diets supplemented with 2% or 4% AXOS-32-0.30 (trial 1) and 2% AXOS-32-0.30 or AXOS-3-0.25 (trial 2), respectively. Growth performance was improved by feeding 2% AXOS-32-0.30 in both trials, although not significantly. Microbial community profiles were determined using 454-pyrosequencing with barcoded primers targeting the V3 region of the 16S rRNA gene. AXOS significantly affected the relative abundance of bacteria at the phylum, family, genus and species level. The consumption of 2% AXOS-32-0.30 increased the relative abundance of Eubacteriaceae, Clostridiaceae, Streptococcaceae and Lactobacillaceae, while the abundance of Bacillaceae was greater in response to 4% AXOS-32-0.30 and 2% AXOS-3-0.25. The abundance of Lactobacillus spp. and Lactococcus lactis was greater after 2% AXOS-32-0.30 intake. Redundancy analysis showed a distinct and significant clustering of the gut microbiota of individuals consuming an AXOS diet. In both trials, concentration of acetate, butyrate and total short-chain fatty acids (SCFAs) increased in fish fed 2% AXOS-32-0.30. Our data demonstrate a shift in the hindgut microbiome of fish consuming different preparation of AXOS, with potential application as prebiotics.


Asunto(s)
Peces/microbiología , Tracto Gastrointestinal/microbiología , Microbiota/efectos de los fármacos , Oligosacáridos/farmacología , Prebióticos , Xilanos/farmacología , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Ácidos Grasos Volátiles/biosíntesis , Peces/crecimiento & desarrollo , Peces/metabolismo , Tracto Gastrointestinal/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Ecotoxicology ; 22(5): 900-14, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23564370

RESUMEN

Microarrays are an ideal tool to screen for differences in gene expression of thousands of genes simultaneously. However, often commercial arrays are not available. In this study, we performed microarray analyses to evaluate patterns of gene transcription following exposure to two natural and one anthropogenic stressor. cDNA microarrays compiled of three life stage specific and three stressor-specific EST libraries, yielding 1734 different EST sequences, were used. We exposed juveniles of the water flea Daphnia magna for 48, 96 and 144 h to three stressors known to exert strong selection in natural populations of this species i.e. a sublethal concentration of the pesticide carbaryl, infective spores of the endoparasite Pasteuria ramosa, and fish predation risk mimicked by exposure to fish kairomones. A total of 148 gene fragments were differentially expressed compared to the control. Based on a PCA, the exposure treatments were separated into two main groups based on the extent of the transcriptional response: a low and a high (144 h of fish or carbaryl exposure and 96 h of parasite exposure) stress group. Firstly, we observed a general stress-related transcriptional expression profile independent of the treatment characterized by repression of transcripts involved in transcription, translation, signal transduction and energy metabolism. Secondly, we observed treatment-specific responses including signs of migration to deeper water layers in response to fish predation, structural challenge of the cuticle in response to carbaryl exposure, and disturbance of the ATP production in parasite exposure. A third important conclusion is that transcription expression patterns exhibit stress-specific changes over time. Parasite exposure shows the most differentially expressed gene fragments after 96 h. The peak of differentially expressed transcripts came only after 144 h of fish exposure, while carbaryl exposure induced a more stable number of differently expressed gene fragments over time.


Asunto(s)
Adaptación Fisiológica/genética , Daphnia/fisiología , Expresión Génica/genética , Estadios del Ciclo de Vida/genética , Estrés Fisiológico/genética , Adaptación Fisiológica/efectos de los fármacos , Animales , Carbaril/toxicidad , Daphnia/microbiología , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Estadios del Ciclo de Vida/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Pasteuria/fisiología , Plaguicidas/toxicidad , Conducta Predatoria
15.
Mol Ecol ; 21(9): 2160-75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22257313

RESUMEN

Natural populations are confronted with multiple selection pressures resulting in a mosaic of environmental stressors at the landscape level. Identifying the genetic underpinning of adaptation to these complex selection environments and assigning causes of natural selection within multidimensional selection regimes in the wild is challenging. The water flea Daphnia is a renowned ecological model system with its well-documented ecology, the possibility to analyse subfossil dormant egg banks and the short generation time allowing an experimental evolution approach. Capitalizing on the strengths of this model system, we here link candidate genome regions to three selection pressures, known to induce micro-evolutionary responses in Daphnia magna: fish predation, parasitism and land use. Using a genome scan approach in space, time and experimental evolution trials, we provide solid evidence of selection at the genome level under well-characterized environmental gradients in the wild and identify candidate genes linked to the three environmental stressors. Our study reveals differential selection at the genome level in Daphnia populations and provides evidence for repeatable patterns of local adaptation in a geographic mosaic of environmental stressors fuelled by standing genetic variation. Our results imply high evolutionary potential of local populations, which is relevant to understand the dynamics of trait changes in natural populations and their impact on community and ecosystem responses through eco-evolutionary feedbacks.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Daphnia/genética , Genoma , Selección Genética , Animales , Daphnia/parasitología , Daphnia/fisiología , Ecosistema , Variación Genética , Conducta Predatoria , Estrés Fisiológico
16.
BMC Mol Biol ; 11: 50, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20587017

RESUMEN

BACKGROUND: The planktonic microcrustacean Daphnia pulex is among the best-studied animals in ecological, toxicological and evolutionary research. One aspect that has sustained interest in the study system is the ability of D. pulex to develop inducible defence structures when exposed to predators, such as the phantom midge larvae Chaoborus. The available draft genome sequence for D. pulex is accelerating research to identify genes that confer plastic phenotypes that are regularly cued by environmental stimuli. Yet for quantifying gene expression levels, no experimentally validated set of internal control genes exists for the accurate normalization of qRT-PCR data. RESULTS: In this study, we tested six candidate reference genes for normalizing transcription levels of D. pulex genes; alpha tubulin (aTub), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), TATA box binding protein (Tbp) syntaxin 16 (Stx16), X-box binding protein 1 (Xbp1) and CAPON, a protein associated with the neuronal nitric oxide synthase, were selected on the basis of an earlier study and from microarray studies. One additional gene, a matrix metalloproteinase (MMP), was tested to validate its transcriptional response to Chaoborus, which was earlier observed in a microarray study. The transcription profiles of these seven genes were assessed by qRT-PCR from RNA of juvenile D. pulex that showed induced defences in comparison to untreated control animals. We tested the individual suitability of genes for expression normalization using the programs geNorm, NormFinder and BestKeeper. Intriguingly, Xbp1, Tbp, CAPON and Stx16 were selected as ideal reference genes. Analyses on the relative expression level using the software REST showed that both classical housekeeping candidate genes (aTub and GAPDH) were significantly downregulated, whereas the MMP gene was shown to be significantly upregulated, as predicted. aTub is a particularly ill suited reference gene because five copies are found in the D. pulex genome sequence. When applying aTub for expression normalization Xbp1 and Tbp are falsely reported as significantly upregulated. CONCLUSIONS: Our results suggest that the genes Xbp1, Tbp, CAPON and Stx16 are suitable reference genes for accurate normalization in qRT-PCR studies using Chaoborus-induced D. pulex specimens. Furthermore, our study underscores the importance of verifying the expression stability of putative reference genes for normalization of expression levels.


Asunto(s)
Daphnia , Perfilación de la Expresión Génica/normas , Regulación de la Expresión Génica , Expresión Génica , Reacción en Cadena de la Polimerasa , Conducta Predatoria/fisiología , Animales , Daphnia/genética , Daphnia/fisiología , Dípteros/fisiología , Femenino , Perfilación de la Expresión Génica/métodos , Genes de Insecto , Proteínas de Insectos/genética , Metaloproteinasas de la Matriz/genética , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , ARN/genética , Estándares de Referencia , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...